Supercharge Your Applications with Samsung High Bandwidth Memory

How a technology ecosystem partnership is bringing TB/s memory transfer speeds to data intensive designs.

Ecosystem Partners:
This whitepaper provides an overview of high bandwidth memory (HBM), and why it is becoming the memory of choice for the most demanding, data-intensive applications. It is also meant as an introduction to the ecosystem resources available for system architects interested in designing products using HBM. Contact information is provided for those who want to take the next step in designing a product using this best-in-class technology.

Samsung is the world’s largest supplier of HBM - a stacked memory technology that allows for high-speed, low power, and low latency designs in a compact form-factor. The second generation, HBM2, enables up to 8GB of memory in a single stacked cube. Each cube is capable of up to 307GB/s of data bandwidth. Customers using a 4 cube configuration have a memory bandwidth of up to 1.2TB/s, by far the highest bandwidth memory solution available today.

Although HBM was originally developed for graphics companies such as AMD and Nvidia, it is now gaining favor in a variety of applications where fast data movement is necessary. The expanding list of applications includes data center acceleration, Artificial Intelligence (AI) and Machine Learning, high-end graphics, and high-speed switching/routing.

Introduction

As we move into the age of AI and Machine Learning, we are seeing the need to process enormous amounts of data. Self-driving cars need to analyze incoming real-time data about their routes, obstacles and traffic conditions in order to react safely when another car veers into the lane ahead. Similarly, facial recognition, speech processing and other emerging AI applications increasingly require computers to process sets of stored and incoming data at blazing speeds, whether they are charged with ensuring effective airport security or simply coping with consumers’ growing appetite for home shopping.

HBM has emerged as the preferred memory solution to address the most demanding, data-intensive applications. An overview of the technology is given next, followed by a list of ecosystem partners who can help those interested in designing best-in-class products using this exciting new form of memory.
Samsung HBM Overview

HBM is a high-speed, system in package (SiP) memory technology that uses stacks of vertically interconnected DRAM chips and a wide (1024-bit) interface to enable more storage capacity and data bandwidth than memory products using conventional wire bonding-based packages. The Joint Electron Device Engineering Council (JEDEC) adopted the original HBM standard in 2013, and approved its second-generation **HBM2** version as an industry standard in January 2016.

Key Benefits of designing HBM

- Higher throughput
- Lower latency
- Lower power
- Smaller footprint

“Our revolutionary Radeon Vega graphics architecture featuring Samsung’s industry-leading high bandwidth memory is supercharging a new generation of data center accelerators and high-end graphics cards. Samsung has a deep strength in memory design that it has successfully combined with its semiconductor development expertise to achieve the integration needed for the high-volume HBM2 and 2.5 packaging that we use on our latest graphics cards. For high performance computing, a single rack of AMD Radeon Instinct MI25 accelerators combines more than one terabyte of HBM2 memory with a petaFLOP of compute performance to power breakthroughs in machine learning, visualization, and other demanding applications. For consumers, our AMD Radeon RX Vega cards with Samsung HBM2 can create more immersive experiences for the tens of millions of PC gamers worldwide.”

—MARK PAPERMASTER, CTO, AMD
The HBM2 standard allows four or eight 8-Gigabit (Gb) DRAM dies to be stacked vertically on a 2.5D silicon “interposer”, which connects the memory stack with the underlying circuit board and the logic processor. Multi-chip packages that stack memory dies are referred to as 2.5D devices. They are considered an intermediate form of advanced packaging technology and are less costly and complex than full-fledged 3D packages, which integrate all the necessary dies in a single vertical stack.

Each eight-die stack can hold up to eight gigabytes (GB) of data, and multiple stacks can be added to the same package. By stacking multiple dies and moving those stacks closer together on a circuit board, the horizontal footprint of HBM memory packages can be greatly reduced, compared with conventional multi-chip DRAM products. HBM technology also improves system performance because signals have a shorter distance to travel between chips. That shorter distance also reduces the energy needed to deliver a given amount of data.

HBM’s packaging relies primarily on through silicon via (TSV) technology, which connects each die to the next using thousands of tiny copper-filled holes as wires, which alternate with layers of external microbumps. Each 8Gb HBM2 die contains more than 5,000 TSVs, while a full HBM2 stack of eight connected 8Gb dies contains more than 40,000 TSVs. By using direct chip-to-chip TSV interconnections along the shortest possible path, even lower-capacity HBM devices with 4-high DRAM stacks offer an impressive I/O density of 1024 bits, allowing them to achieve up to 1.2 terabytes per second (TB/s) of system bandwidth.
HBM, with its advanced TSV technology, micro-scale interconnections, and extreme I/O count to increase the memory bandwidth, clearly offers better performance than its nearest competitor, the graphics double data rate (GDDR) memory used in graphics cards. At a component level, a single Samsung 8GB HBM2 package will offer a 307GB/s data bandwidth, achieving 9.6 times faster data transmission than an 8Gb GDDR5 chip. At a system level, HBM provides 2.7x better performance and 0.8x less power when compared with GDDR. In addition HBM optimizes circuit footprint by using less CPU/GPU + memory real estate and fewer HBM packages.

Figure 3 below shows the bandwidth achieved by HBM compared to GDDR, based on common system configurations.

Current HBM2 products offer:

- Memory capacity up to 8GB per stack (using eight 8Gb DRAM die)
- A top data transfer speed of 2.4 gigabits per second (Gbps) per pin – more than double the speed of HBM1
- 16 bits per channel (8 bits per pseudo channel) error-correcting code (ECC) capability, which did not exist in HBM1
Samsung currently offers two generations of HBM2 -- Flarebolt with a pin speed of 2.0Gbps, and an even higher performing die called Aquabolt that provides a 2.4 Gbps pin speed.

Today, Samsung is the world’s leading HBM supplier, and remains committed to expanding the technology roadmap to support potential markets. Beyond HBM2, Samsung is actively looking into and leading the development of a third-generation **HBM3 standard**, which is currently being drafted by JEDEC. While still being defined, the new HBM3 standard is expected to accommodate more memory per die, more dies per stack and twice the maximum bandwidth of HBM2.

Samsung HBM2 Foundry Services

HBM2 is frequently used in high performance computing systems because of its lower power per bit. To implement HBM2 requires 2.5D PKG technology. Also, high performance systems require a companion logic chip to perform faster and consume less power. So, the most advanced process technology should be used for logic chip manufacturing to lower the power. Thus, Samsung Foundry delivers value by providing the following services to logic chip design companies:

- Advanced process chip manufacturing
- PKG service including 2.5D + HBM2

As an advanced process technology provider, Samsung Foundry has kept its technology leadership position by introducing industry’s first 32 nanometer (nm) high-k metal gate (HKMG) chip manufacturing process in 2011, followed in 2015 by the industry’s first 14nm fin field-effect transistor (FinFET) technology – which enabled the production of faster, smaller and more power-efficient chips.

In 2016, Samsung Foundry started 10nm mass production for the first time. And in 2018, it plans to enable the world’s first semiconductor technology based on extreme ultraviolet (EUV) lithography.

Samsung Foundry Milestones

![Figure 4: Samsung Foundry Business Highlights](source: Samsung)
Samsung I-Cube, 2.5D Packaging and Turnkey Services

Samsung Foundry is now offering the company’s advanced logic process technology and packaging solutions to customers designing a variety of mobile and high-performance computing (HPC) products. Working in close collaboration with several leading logic chip designers and HBM interface and controller IP providers, Samsung has helped establish HBM2 technology as the best available memory option for advanced graphics, network and server applications that require high capacity, bandwidth and reliability, as well as outstanding energy- and space-efficiency. Samsung Foundry will shortly begin the volume production of its new I-Cube 2.5D interposer chip, a turnkey solution for connecting HBM2 memory packages to processors or logic chips.

High-performance applications that have incorporated HBM technology can be demanding, especially when it comes to maximizing the system performance of stacked DRAM wafers, high-density TSVs and tightly packed logic chips. Consequently, HBM testability and supply chain management face additional complexities that are compounded by the rapid evolution of technologies.

To effectively assist and navigate through these challenges, Samsung Foundry offers customers the complete turnkey service including foundry, 2.5D packaging and HBM. This unique start-to-finish production option is an advantage that only Samsung Foundry can currently provide. And, Samsung Foundry will continue to provide end users with solutions that are effectively optimized to meet the architectural requirements in new designs.

Samsung’s HBM Ecosystem Partners

Introducing a new and dramatically different memory technology like HBM typically requires an entire ecosystem of partners, each of which has an important role to play. This kind of collaborative approach can speed product development by allowing multiple companies to contribute specialized expertise in several different areas. Partners may also bring valuable supplier and customer relationships, which can make it easier to establish an effective supply chain and to reassure end users considering whether to implement the new technology in their own products.

Samsung’s current HBM2 ecosystem partners, and their main areas of expertise, include:

- **Broadcom**: HBM2 ASIC design and high-speed interface intellectual property (IP)
- **eSilicon**: FinFET ASIC, HBM2 Physical Layer (PHY) IP, 2.5D interposer design & differentiating IP
- **Northwest Logic**: HBM2 Controller IP
- **Rambus**: HBM2 Physical Layer (PHY) IP
- **Synopsys**: HBM2 PHY IP, Controller IP and Verification IP (VIP) for the system
- **Cadence Design**: VIP for the controller system
- **ASE Group**: Outsourced semiconductor assembly and test (OSAT)
Broadcom

The ASIC Products Division (APD) of San Jose, Calif.-based Broadcom Ltd. www.broadcom.com has a long history of providing innovative application-specific integrated circuit (ASIC) solutions for advanced networking and high-performance computing applications. APD offers a comprehensive technology platform in advanced process nodes along with a broad range of ASIC design implementation services. APD enables its customers to differentiate in the market place with cutting edge, early adopter custom silicon.

APD has already landed a large number of 2.5D ASIC design wins across multiple process nodes, and its first HBM ASIC started volume production in 2017.

Besides its ASIC design skills, Broadcom’s APD offers two key pieces of silicon-proven interface technology to the growing Samsung HBM technology ecosystem: HBM2 physical layer (PHY) IP, and high-speed serializer/deserializer (SerDes) IP. It also offers expertise in supply chain management, power integrity and signal integrity capability, and packaging design.

APD’s HBM ASIC devices, based on 7nm process technology, offer the high bandwidth and channel density necessary to support a variety of advanced applications, including:

- Artificial intelligence and deep learning
- High-performance computing
- Switching and routing

Successfully implementing 2.5D ASIC technology requires a large investment and steep learning curve that only a few companies have the ability to support. Broadcom has made the necessary investment to expand its 2.5D offering to provide unprecedented performance and value in the 7nm process node.
While HBM technology offers tremendous performance advantages, it also poses significant design and manufacturing challenges. By working closely with Samsung and developing a broad portfolio of supporting IP and 2.5D package design and manufacturing capabilities, we have successfully overcome those challenges, resulting in a lower-risk path to volume production for our customers.

—HUGH DURDAN, VICE PRESIDENT OF STRATEGY AND PRODUCTS, ESILICON

eSilicon
San Jose, Calif.-based eSilicon Corp. designs and manufactures ASICs and the differentiating IP that enables high-performance networking, computing, AI/deep learning and 5G infrastructure products. It has completed successful tapeouts of advanced ASIC and 2.5D designs for these applications, and is currently delivering one of the industry’s first HBM deep learning ASICs for a tier-one customer.

eSilicon has been developing 2.5D systems since 2011. To ensure customer success in volume manufacturing, eSilicon includes the following services in its ASIC engagements:

- Interposer and package design and routing
- Signal and power integrity analysis
- Design for manufacturability
- Thermal integrity and warpage analysis

As a leader in 2.5D systems, it acts as a single production source for the acquisition and assignment of all die in the package, as well as assembly, test and delivery of the final tested, yielded device. It supports multiple packaging, interposer and FinFET wafer fab partners, and helps each customer pick the right technology for their design.

eSilicon’s FinFET IP portfolio includes high-speed SerDes, multi-port memories, fast caches and register files, a family of ternary content addressable memories (TCAMs) and HBM2 PHYs. Because eSilicon uses all of this IP in its ASIC engagements, it understands what it takes to successfully design a complex device incorporating the IP, unlike traditional IP companies who design but never use their IP products. It also maintains a large staff of IP designers to customize IP for unique customer applications and needs.

“While HBM technology offers tremendous performance advantages, it also poses significant design and manufacturing challenges. By working closely with Samsung and developing a broad portfolio of supporting IP and 2.5D package design and manufacturing capabilities, we have successfully overcome those challenges, resulting in a lower-risk path to volume production for our customers.”

—HUGH DURDAN, VICE PRESIDENT OF STRATEGY AND PRODUCTS, ESILICON

FIGURE 5: ESILICON’S 2.5D EXPERIENCE
Source: eSilicon
Northwest Logic (www.nwlogic.com), located in Beaverton, Oregon, offers the market-leading HBM2 Controller IP with the following key advantages:

- Fully silicon proven in 17 customer designs and 7 test chips thus far. 100% success rate for all tapeouts.
- Supports all HBM2 data rates (2.0, and 2.4Gbit/s/pin and beyond) and stack configurations (four die, eight die).
- Highly configurable to minimize size and power and maximize performance and ease of use.
- Full featured including optional add-on cores, comprehensive memory test and high reliability features.
- Provides maximum memory efficiency over a wide range of traffic scenarios.
- Delivered fully integrated and verified with a wide range of customer-selected, silicon-proven HBM2 PHYs.

NEC used Northwest Logic’s HBM2 Controller IP in its new line of SX-Aurora TSUBASA high-performance supercomputers. A key component of this product is the 8 core Vector Engine processor which connects to six HBM2 modules. The use of HBM2 provided a 5x performance per core improvement over the previous DDR3-based processor. It also helped provide a 5x per watt and 10x per square meter of floor space improvement over NEC’s previous generation product. NEC stated, “We are pleased we were able to meet our performance goals with an efficient gate utilization using Northwest Logic’s HBM2 Controller IP.”

“Our collaboration with Samsung ensures that our customers achieve the highest possible system performance when using the combination of Northwest Logic’s HBM2 Controller IP and Samsung’s HBM2 devices.”

—BRIAN DAELLENBACH, PRESIDENT, NORTHWEST LOGIC
Rambus

The Memory and Interfaces Division of Sunnyvale, Calif.-based Rambus Inc. www.rambus.com develops products and services that solve the power, performance, capacity and interoperability challenges of the communications and data center computing markets.

Rambus has extensive experience with complex 2.5D and 3D system design, and its HBM Gen2 PHY interface IP is fully standards-compliant, supporting data rates up to 2,000 Mbps per data pin, for a total bandwidth of 256 GB/s. The interface features 8 independent channels, each containing 128 bits for a total data width of 1024 bits, and it supports vertical stacks of 2, 4 or 8 DRAM dies. It also supports multiple PHYs, allowing chip designers to customize the interface by increasing or decreasing the number of channels.

To ensure easy implementation and improved design flexibility, Rambus performs complete signal- and power-integrity analysis on the entire 2.5D system to ensure that all signal, power and thermal requirements are met. Rambus also has announced validated interoperability between its HBM2 PHY and Northwest Logics’ HBM2 Controller IP. Along with Samsung’s DRAM and interposer chips, the companies’ offer a complete, silicon-proven and verified HBM2 solution that can be configured to exact customer requirements.

FIGURE 7: THE RAMBUS HBM2 PHY ROBUST EYE DIAGRAM

Source: Rambus

“As a provider of high-speed and innovative IP, Rambus is pleased to continue our work with a leading foundry provider like Samsung. Collaborating with Samsung ensures high performance IP and high quality solutions to our end customers.”

—LUC SERAPHIN, SENIOR VICE PRESIDENT AND GENERAL MANAGER OF MEMORY AND INTERFACES DIVISION, RAMBUS
Besides being the world’s leading Electronic Design Automation (EDA) vendor, Mountain View, Calif.-based Synopsys Inc. is also a leading supplier of DDR and HBM semiconductor interface IP. Its HBM PHY interface IP was used in Advanced Micro Devices’ (AMD's) Fiji GPUs – the first graphics processors to feature high bandwidth memory – in 2015. Synopsys’ DesignWare HBM2 PHY was also the first HBM2 PHY IP to reach volume production as part of AMD’s Vega GPUs.

Available in 16nm, 14nm, 12nm and 7nm technologies as part of Synopsys’ extensive DesignWare IP portfolio, Synopsys’ HBM2 PHY IP is optimized for high performance, low latency, low area use, low power and ease of integration. The DesignWare HBM2 PHY is delivered in GDSII database format as a set of hard macrocells that can be assembled into a complete 512-bit or 1024-bit HBM2 PHY supporting 2, 4 or 8-high HBM2 stacks.

Synopsys offers a complete HBM2 interface solution, including PHY, controller, and verification IP. Its DesignWare HBM2 controller is built from the industry leading DesignWare Enhanced Universal DDR Memory Controller, and features high bandwidth, as well as low area use and low latency. It comes with verification IP that complies with the HBM and HBM2 JEDEC specifications and provides protocol, methodology, verification and productivity features including built-in protocol checks, coverage and verification plans, and Verdi protocol-aware debug and performance analysis, enabling users to rapidly verify HBM-based designs.

Synopsys’ HBM2 IP is available with a variety of service options including PHY hardening, 2.5D interposer design assistance and subsystems and signal integrity services.

“We selected Synopsys’ DesignWare HBM2 IP solution to take full advantage of the bandwidth and power efficiency of the 16GB of HBM2 memory in our Radeon™ Vega Frontier Edition graphics cards. Synopsys’ deep expertise in memory interfaces enabled us to successfully integrate HBM2 IP into the ‘Vega’ GPU architecture and achieve aggressive power and memory bandwidth targets to serve Machine Learning and advanced graphics applications.”

—JOE MACRI, CORPORATE VP AND PRODUCT CTO, AMD

Cadence provides Verification IP components for the HBM ecosystem. This verification IP (VIP) provides support for the JEDEC® High-Bandwidth Memory (HBM) DRAM device standard, from pre 1.0 to current 2.0x versions. It provides a mature, highly capable compliance verification solution that supports simulation, formal analysis, and hardware acceleration platforms, making it applicable to intellectual property (IP), system-on-chip (SoC), and system-level verification. The HBM VIP models a single channel of HBM DRAM; this model can be replicated for multiple channels and multiple ranks. The model runs on all leading simulators, and leverages the industry-standard Cadence Memory Model core architecture, interface, and use model.
Introduction
With a proven track record spanning over three decades, ASE, the OSAT (Outsourced Services in Assembly & Test) market leader, continues its tradition of manufacturing expertise through orchestrated collaboration with customers, suppliers and partners, alike. Alongside a broad portfolio of established technologies, ASE is delivering innovative advanced packaging, System-in-Package and MEMS solutions. Dedicated teams are innovating across technology and ecosystem to facilitate the timely manufacture of devices and systems enabling higher performance, lower power, greater speed, and increased bandwidth. With applications spanning artificial intelligence, automotive, IoT, mobile, and high performance computing, ASE is dedicated to working within industry partnerships for the ultimate benefit of mankind.

ASE: Assembly & Test
2.5D technology is at the forefront of advanced packaging technologies, enabling unprecedented achievement in interconnect density, power and performance. Assembly and test play a pivotal role. Over the last decade, ASE has partnered across the ecosystem to carry out extensive work from initial proof of concept to technology feasibility to product development to production ramp and ultimately high volume production. In May 2015, ASE became the first OSAT in production for 2.5D IC with HBM devices. As of December 2017, ASE’s 2.5D high volume production had achieved over 3,000 interposers and over 150K units.

HBM is essentially a 3D IC, featuring stacked die with through silicon vias and microbumps for die-to-die interconnect, while 2.5D refers to die stacked packaging technologies that use interposers to achieve the highest level of die-to-die interconnectivity currently available. ASIC and HBM connection is achieved using silicon interposer enabling the HBM to produce high bandwidth while reducing 90% of the data transfer distance. The improved die-to-die proximity enables extremely low latency and power efficiency. Further, the 2.5D platform enables significant dimensional reduction between interconnects: a microbump size is 8000 times smaller than a solder ball and is also 125 times smaller than a C4 bump. Currently, a silicon interposer is approximately 100 μm in thickness, while allowing more than 100K interconnects for the ASIC and HBM connection. 2.5D technologies are developed to meet requirements for high performance computing, such as high speed transmission, high bandwidth, and lower power consumption.
The ASE 2.5D Advantage

The sheer complexity of 2.5D technology presents many challenges that must be overcome during the manufacturing process. HBM is currently shipped to ASE in tape and reel form, requiring incoming inspection, assembly, test and outgoing inspection. Alignment accuracy is critical because X-Ray cannot be used to carry out inspection. The assembly process needs to be highly robust to mitigate any risk of costly damage to the HBM. Both incoming and outgoing inspection must be well aligned. Every process and subsequent yield are likewise critical.

The microbumps are minuscule therefore warpage control must be closely monitored, as must particle control, given high sensitivity to any foreign material during the assembly process.

Partnership with ASE can enhance overall 2.5D quality. The incoming and outgoing inspection methodology and criteria ASE has implemented meets stringent requirements for reliability and performance. ASE provides customers with flexible process flows to meet their needs. Specifically, HBM-last assembly process has been developed such that any loss prior to HBM attach will not sacrifice the high value HBM. ASE can also provide molding-type 2.5D solutions to customers. With proven high quality process capabilities as required by 2.5D packaging, ASE can be considered a strong and reliable partner to bring such complex and powerful products to market.

“As ASE keeps pace with the changing electronics landscape and related System in Package (SiP) technology requirements, we need to be in lockstep with all partners within our ecosystem. The evolution of the partnership with Samsung is a reflection of the steadfast commitment to the advancement of HBM innovation and application, which will ultimately enable the next wave of high bandwidth, power efficiency and space savings in high performance applications and products. Packaging and test play a pivotal role, particularly given the increasing complexity of HBM, and ASE is scaling its SiP technology and collaboration for 2018 and well beyond.”

—DR. CP HUNG, VICE PRESIDENT OF CORPORATE RESEARCH & DEVELOPMENT, ASE GROUP
Looking Ahead: An HBM Roadmap to the Future

In the coming era of self-driving cars, real-time speech processing and continuous Machine Learning, ever-more powerful technology will be needed to handle the unprecedented volumes of data these applications will generate. Samsung’s High Bandwidth Memory (HBM) has the exceptional capacity, bandwidth, performance and power efficiency needed to handle today’s—and tomorrow’s—toughest computing tasks.

HBM is designed to easily outperform competing memory solutions such as GDDR5, while Samsung’s ecosystem of world-class technology partners is eminently qualified to provide all the additional support and services you’ll need to take your project from initial design to final manufacturing and test.

The market success of Nvidia’s Tesla P100 and V100, as well as AMD’s Vega, demonstrate both the mass market appeal and ecosystem readiness of HBM2.

Whether it’s eSilicon’s high-performance deep learning ASICs, Broadcom’s 2.5D ASIC design wins, Synopsys’ easily integrated DesignWare HBM2 PHYs, Northwest Logic’s best-selling HBM2 controllers or the unrivaled capabilities of ASE, the world’s largest outsourced semiconductor assembly and test provider, our lineup of technology assets, customer-service skills and demonstrated industry leadership is second to none.

Backed by Samsung’s commitment to continuous innovation and collaboration, our long-term HBM roadmap is as relevant to today’s emerging applications as it will be to tomorrow’s leading markets. Samsung is building the memory technology of the future and would like to invite you to be part of it.